Potential Antiaging Effects of Vitamin D3 Protection Against Neurotoxic Agents

The Durk Pearson & Sandy Shaw®
Life Extension NewsTM
Volume 9 No. 2 • April 2006


Potential Antiaging Effects of Vitamin D3 Protection Against Neurotoxic Agents

A paper we recently obtained reports that vitamin D3 attenuates damage induced by 6-hydroxydopamine, a powerful free radical-generating oxidant, both in cell culture of rat midbrain neurons and in rats whose brains were lesioned with 6-hydroxydopamine.1

The paper reports that vitamin D3 has been shown to be a “potent inducer” of endogenous GDNF (glial-derived neurotrophic factor), which is neuroprotective against the toxicity of 6-hydroxydopamine and MPTP in animal models of Parkinson’s disease. GDNF is upregulated in response to neuronal injury and in cortex after ischemia, as well as in response to the cytotoxic effects of kainate in rats and has also been found to reduce the extent of infarction in cerebral cortex of rats. The authors note that, in addition to inducing GDNF, vitamin D3 also increases nerve growth factor and transforming growth factor beta2 expression in neuroblastoma cells and neurotrophin3/neurotrophin4 mRNA levels in astrocytes. Moreover, the authors note, vitamin D3 (in contrast to GDNF) can pass through the blood-brain barrier, making it possible to take vitamin D3 orally to reach brain tissues.

The researchers found that vitamin D3-pretreated 6-hydroxydopamine-lesioned rats had significantly higher peak locomotor activity as compared to lesioned animals that had received saline pretreatment. Peak mean rest time was significantly lower in D3-pretreated animals. “These results suggest that D3 treatment attenuates the hypokinesia produced by 6-hydroxydopamine lesions.” Vitamin D3 pretreatment also normalized nigral dopamine and dopamine metabolites in the lesioned animals in vivo. The authors conclude, “… since D3 can pass through the blood-brain barrier and elevate GDNF levels, this vitamin may be potentially useful in treatment of Parkinson’s disease and other neurodegenerative disorders.” As dopaminergic neurons are damaged and destroyed in the process of ordinary aging, even in the absence of overt Parkinson’s disease, this paper supports the use of vitamin D3 as a possible antiaging treatment for the brain.

Reference

  1. Wang et al. Vitamin D3 attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res 904:67-75 (2001).

Featured Product

  • Learn more about Vitamin D3 benefits and implementation strategies.

FREE Subscription

  • You're just getting started! We have published thousands of scientific health articles. Stay updated and maintain your health.

    It's free to your e-mail inbox and you can unsubscribe at any time.
    Loading Indicator