Durk Pearson & Sandy Shaw’s®
Life Extension NewsTM
Volume 16 No. 5 • May 2013


Hydrogen Therapy

Stroke

Here we continue our series on the use of hydrogen gas in the prevention and treatment of medical conditions, largely having to do with disorders induced by increased oxidative stress. As you may recall when we began this series of articles nearly a year ago (see “Hydrogen Therapy” in the June 2012 Life Enhancement magazine), we explained the special effectiveness of hydrogen as a selective antioxidant that scavenges the highly toxic hydroxyl radical, while having much less effect on radicals that play a role as signaling agents in normal physiology (such as superoxide and nitric oxide), and also scavenges the powerful oxidant peroxynitrite formed by the chemical reaction between superoxide and nitric oxide. We also pointed out that, unlike many other antioxidants, hydrogen is able to enter the mitochondria and scavenge free radicals there where most of the ROS (reactive oxygen species) are produced. Next, we explained the remarkable fact that hydrogen is produced in your lower intestine by gut bacteria, especially when they get larger quantities of fermentable dietary fiber called long chain fructooligosaccharides (LCFOS). From there, the hydrogen diffuses throughout your body, providing protection against hydroxyl radicals and peroxynitrite and in other ways, until leaving your body by exhalation from the lungs, diffusion from the skin, and from farts.

We have been following the development of this new field of medicine, hydrogen therapy, and writing up some of the studies in our newsletters. The one that follows shows how hydrogen was able to provide protection in Wistar rats against TIAs (transient ischemic events), where a section of the brain is briefly deprived of oxygen but not long enough for a complete stroke to take place.

In this study,1 researchers used a common model of these transient reductions of blood flow to the brain by occluding two blood vessels that enter the brain for ten minutes. The experimental animals received hydrogen gas for 3 hours (at a concentration of 2%) inhalation immediately after the operation that was done to occlude the vessels. As a result of this treatment, many neurons die in the targeted CA1 region of the brain. The cause is not entirely understood but oxidative stress is believed to be the main cause. Increases in oxidative stress create molecules that can be measured to follow this damage.

In this study, the transient ischemia in the rats that did not receive hydrogen resulted in increased lipid peroxidation (as indicated by increased levels of malondialdehyde) and the product of oxidation 8-iso-PGF2alpha, whereas the amounts of these ROS (reactive oxygen species) were significantly reduced by hydrogen in the rats treated with hydrogen. Moreover, the hydrogen significantly reduced neuronal death in the CA1 brain region. In a test of cognitive function, hydrogen-treated rats performed better than the rats subjected to ischemia but not receiving hydrogen in the Morris water maze, where animals have to find a submerged platform in a container of water in order to climb onto the platform to discontinue treading water. It took the hydrogen-treated rats a shorter length of time to find the hidden platform.

As the researchers of paper #1 report, there have been earlier studies finding that inhalation of hydrogen gas could decrease the infarct size (the volume of dead cells) in animal models of stroke, limit the size of heart infarction in animal models of heart attack, and protect against generalized inflammation and improve survival in animal models of poly-microbial sepsis.

While the animals in this study received hydrogen gas by inhalation, we have written earlier in this series (see, especially, our introductory article in the June 2012 issue of Life Enhancement magazine) on how hydrogen gas can be obtained conveniently (a gift of certain gut bacteria) in appropriate quantities and periods of time by consuming the LCFOS (long chain fructooligosaccharides) type of dietary fiber.

Reference

  1. Ge et al. Inhalation of hydrogen gas attenuates cognitive impairment in transient cerebral ischemia via inhibition of oxidative stress. Neurol Res. 34(2):187-194 (2012).

FREE Subscription

  • You're just getting started! We have published thousands of scientific health articles. Stay updated and maintain your health.

    It's free to your e-mail inbox and you can unsubscribe at any time.
    Loading Indicator