The Durk Pearson & Sandy Shaw®
Life Extension NewsTM
Volume 19 No. 5 • June 2016

Fear Amelioration By Ketone Body Supplementation

Fear can be a debilitating emotion; just think of post-traumatic-stress disorder as an example. Hence, ways to reduce fear are being studied. One little known way is to supplement with ketone bodies, naturally produced during fasting or low carbohydrate diets or from an MCT (medium chain triglyceride) supplement OR by taking them exogenously.

Fear Processed By the Hippocampus and the Amygdala

“The fear-related memory and anxiety manifests, in mice, in freezing behavior. Contextual [in the context of an event] fear is associated with the hippocampal and amygdala neural circuitry, whereas tone-associated fear [where a tone is a cue for an electric shock] is more closely associated with amygdala pathways.” (Kashiwaya, 2014) The amygdala is an area of the brain involved in fear and anxiety, among other things, while the hippocampus is a brain hub for learning and memory.

In a mouse model of Alzheimer’s disease (AD), mice that were fed a ketone body diet exhibited significantly reduced freezing time in response to the tone signifying that the mouse is about to be shocked. Moreover, the mice had a reduced burden of amyloid beta in their brains. The results point to protection against age-associated deterioration of amygdala neurons. (Kashiwaya, 2014)


  • Bartzokis. Neuropharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology. 62(7):2137-53 (2012).
  • Coates and Herbert. Endogenous steroids and financial risk taking on a London trading floor. Proc Natl Acad Sci U S A. 105(16):6167-72 (2008).
  • Draganski, Gaser, et al. Changes in grey matter induced by training. Nature. 427:311-312 (2004).
  • Fields. Change in the brain’s white matter. Science. 330:768-769 (2010).
  • Fuhr et al. Inhibitory effect of grapefruit juice and its bitter principal, naringenin, on CYP1A2 dependent metabolism of caffeine in man. Br J Clin Pharmacol. 35:431-6 (1993).
  • Habbas, Santello et al, Neuroinflammatory TNFα Impairs Memory via Astrocyte Signaling. Cell. 163:1730-41 (2015).
  • Hashim and VanItallie. Ketone body therapy: from the ketogenic diet to the oral administration of ketone ester. J Lipid Res. 55:1818-26 (2014).
  • Hen et al. J Neurosci. Feb. 6, 2008 (as reported in Science News, Feb. 9, 2008 (p. 83)
  • Henderson et al. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond). 6:31 (2009).
  • Henderson and Poirier. Pharmacologic analysis of the effects of polymorphisms in APOE, IDE and IL1B on a ketone body based therapeutic on cognition in mind to moderate Alzheimer’s disease; a randomized, double-blind, placebo-controlled study. BMC Med Genet. 12:137 (2011).
  • Hucklenbroich, Klein, et al. Aromatic turmerone induces neural stem cell proliferation in vitro and in vivo. Stem Cell Res Ther. 5:100 (2014).
  • Itoh, Imano, et al. (-)-Epigallocatechin-3-gallate increases the number of neural stem cells around the damaged area after rat traumatic brain injury. J Neural Transm. 119:877-90 (2012).
  • Kempermann, Kuhn, and Gage. Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci. 18(9):3206-12 (1998).
  • Klosinski et al. White matter lipids as a ketogenic fuel supply in aging female brain: implications for Alzheimer’s disease. EBioMedicine. 2:1888-904 (2015).
  • Maalouf et al. The neuroprotective properties of caloric restriction, the ketogenic diet, and ketone bodies. Brain Res Rev. 59(2):293-315 (2009).
  • Mobbs, Petrovic, et al. When fear is near: Threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science. 317(5841):1079-83 (2007).
  • Morrone et al. Interaction between therapeutic interventions for Alzheimer’s disease and physiological Abeta clearance mechanisms. Front Aging Neurosci. 7 (article 64), (2015).
  • Naylor, Bull, et al. Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain. Proc Natl Acad Sci U S A. 105(38):14632-7 (2008).
  • Newport et al. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s. Alzheimers Dement. 11(1):99-103 (2015).
  • Osso and Chan. Astrocytes underlie neuroinflammatory memory impairment. Cell. 163:1574-6 (2015).
  • Paoli et al. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr. 67:789-96 (2013).
  • Santos-Soto et al. Voluntary running in young adult mice reduces anxiety-like behavior and increases the accumulation of bioactive lipids in the cerebral cortex. PLoS ONE. 8(12):e81459 (2013).
  • Westman et al. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr Metab (Lond). 5:36 (2008).
  • Yoo, Choi, et al. (-)-Epigallocatechin-3-gallate increases cell proliferation and neuroblasts in the subgranular zone of the dentate gyrus in adult mice. Phytother Res. 24:1065-70 (2010).

Featured Product

Ingredients in this Article

FREE Subscription

  • You're just getting started! We have published thousands of scientific health articles. Stay updated and maintain your health.

    It's free to your e-mail inbox and you can unsubscribe at any time.
    Loading Indicator