The Durk Pearson & Sandy Shaw®
Life Extension NewsTM
Volume 19 No. 7 • December 2016


EGCG INHIBITS AMYLOID BETA-INDUCED COGNITIVE DYSFUNCTION

Mechanisms Identified for Protective Effect of EGCG Against Cognitive Dysfunction Resulting from Amyloid Beta Buildup as Occurs in Alzheimer’s

A recent study of a mouse model of Alzheimer’s disease (Lee, 2009) reports that mice pretreated with EGCG for three weeks before receiving intracerebroventricular administration of amyloid beta had reduced toxic effects as compared to animals receiving the amyloid beta but not being pretreated with EGCG. The authors suggest, on the basis of their data, that “EGCG may be a beneficial agent in the prevention of development or progression of AD [Alzheimer’s disease].” (Lee, 2009)

The mice receiving EGCG were given doses of 1.5 or 3 mg/kg body weight in their drinking water. (This is roughly equivalent to a dose of 18 mg to 36 mg for a 100 kg human—these are very small doses compared to the usual human supplementation of EGCG.)

One of the measures of cognition used by the authors was the Morris water maze test, where treatment with amyloid beta resulted in significantly slower arrival times at the platform location (where the mice escaped the need to continually tread water), whereas pretreatment with EGCG (either dose) significantly inhibited the effects of amyloid beta on escape latencies (the delay in reaching the platform).

The apoptotic death of neurons induced by amyloid beta was reported to be prevented by pretreatment with EGCG. The researchers explain that activation of MAP kinase and NFkappaB as well as the activation of alpha, beta, and gamma-secretase are implicated as causes of amyloid beta-induced neuronal cell apoptosis and that pretreatment with EGCG significantly inhibited the expression of these molecules. Other mechanisms were discussed in the paper.

Reference

  • Lee et al. Green tea (-)-Epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NFkappaB pathways in mice. J Nutr. 139:1987-93 (2009).

Featured Product

Ingredients in this Article

FREE Subscription

  • You're just getting started! We have published thousands of scientific health articles. Stay updated and maintain your health.

    It's free to your e-mail inbox and you can unsubscribe at any time.
    Loading Indicator